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Abstract. We discuss Lie-point symmetries of stochastic (ordinary) differential equations, and the
interrelations between these and analogous symmetries of the associated Fokker–Planck equation
for the probability measure.

Introduction

Symmetry methods for differential equations are by now a popular and widely employed
method in the study of ordinary differential equations (ODEs) and of partial differential
equations (PDEs) [1–8]; this popularity is due not only to the aesthetical appeal of the method
but also to its utility in lowering the order of (or solving) ODEs and in determining explicit
solutions and reductions of the PDEs under study.

However, such methods have only been used, as far as we know, to studydeterministic
differential equations, and not in the study ofstochasticdifferential equations (SDEs in the
following) [9–13]; a partial exception to this is provided by the work of Misawa [14], focusing
on conserved quantities, and implicitly by the recent work of Arnold and Imkeller on normal
forms for SDEs [13, 15].

The purpose of this paper is indeed to point out that symmetry methods are also potentially
useful in the stochastic context. As we hope our discussion will be of interest both to readers
working on stochastic differential equations (dynamical systems) and to those working on
symmetries of differential equations, we will briefly recall some general features of both these
topics in sections 1 and 2; we also restrict our discussion toprojectable symmetriesand briefly
discuss the physical basis for this restriction.

The cognizant reader will find that we devote a relatively large amount of our attention
to rather introductive considerations, either on symmetries of differential equations or on
stochastic (Ito) equations and their associate diffusion equations; we felt this was needed, as
we aim at these two rather different audiences mentioned above, and at bridging between them.

The first obstacle to overcome for applying symmetry methods to SDEs is just to provide a
suitable definition of symmetry for an SDE, which (after recalling in section 1 the basics of the
theory for deterministic differential equations) we do in section 2 for symmetries which do not
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act on the time variable, and in section 3 for those acting ont as well. We also obtain explicit
determining equationsfor the symmetries. Our definition of symmetry is less restrictive than
the one used by Misawa [14] and proves to be useful.

To an SDE is intimately associated the corresponding Fokker–Planck equation for the
evolution of the probability measure; in section 4 we discuss the projectable symmetries of
this. As an SDE (considered as defining aone-pointstochastic motion [13], see below) and
the associated Fokker–Planck equations carry (except in degenerate cases) the same statistical
information, one would expect that symmetries of an SDE correspond more and less closely to
symmetries of the associated Fokker–Planck equation. This is indeed the case, as we show in
section 5; there we also discuss how this correspondence can be implemented computationally
in order to obtain symmetries of the Fokker–Planck equation (which is an equation forρ(x, t))
from symmetries of an SDE (which is an equation forx(t) depending on a Wiener process
W(t)), or the other way round.

Section 6 is devoted to an illustration of examples in one, two and more space dimensions.
Symmetries of the Fokker–Planck equation in one dimension have been studied and classified
by Cicogna and Vitali [16] and by Shtelen and Stogny [17], and in the first three examples of
section 6 we check our results against theirs; similarly the symmetries of the two-dimensional
case (with constant diffusion matrix) have been studied and classified by Finkel [18], and we
check our results against his in subsequent examples. In the final examples of section 6 we
consider some simple higher-dimensional cases.

In appendix A we derive the formula (used in section 3) for the change of a Wiener process
w(t) under a near-identity change of the time variable,t → s = t + ετ(t). Appendix B is
devoted to the question of normalization of solutions to the Fokker–Planck equation (only
correctly normalized solutions can be given a probabilistic interpretation), and how this
can change under a symmetry transformation. In particular, we identify the condition a
transformation has to satisfy in order to preserve the correct normalization of solutions.

Let us explain in some words, and stress again, the above remark about statistical
equivalence between the one-point process described by a SDE and the Fokker–Planck
equation, referring to [13] (section 2.3.9) for details (we thank an unknown referee for stressing
this point). An SDE defines not only a one-point process, but also a random dynamical system,
i.e. simultaneous motion of all pointsx under the same realization of the (vector) Wiener
process. Thus, together with the one-point process, it also definesn-point processes, for
any integern (it is remarkable that for Gaussian random dynamical systems it is essentially
sufficient to consider the two-point process [13]). Thesen-point motions (withn > 2) contain
information which is embodied in the SDE but in principle cannot be obtained from the Fokker–
Planck equation.

When discussing relations between an SDE and the associated Fokker–Planck equation in
this paper, SDEs can always be thought of as defining a one-point stochastic motion; statements
about their statistical equivalence with Fokker–Planck equations should be understood in this
sense and in the light of the above remark.

On the other hand, when discussing symmetries of SDEsper se, i.e. in sections 2 and 3,
we are not imposing this limitation: then-point process can be thought of as corresponding to
n copies of the SDE under the same realization of the Wiener process, and the same conditions
guaranteeing the invariance of the SDE will also guarantee invariance of then-point process.
We will not investigate here the question of other symmetries, if any, of then-point process
apart from these.

After describing what we do in this paper, let us briefly comment on the problems we do not
consider here, apart from the one of symmetries of then-point motions just mentioned. First
of all, in this paper we do not discuss the use of the symmetries of an SDE or of the associated
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Fokker–Planck equation. For deterministic differential equations, continuous symmetries can
be used to lower the order of the equation (for ODEs) or for determining specific classes of
solutions via symmetry reductions (for PDEs); moreover, they can be used to generate new
solutions from known ones (see, e.g., example 2.41 in [1], where the fundamental Gaussian
solution of the heat equation is obtained starting from the trivial constant one).

Thus, symmetries of the Fokker–Planck equation can be used to determine specific
solutions via symmetry reductions. It should be noted that symmetry-related solutions are
physically equivalent: if we look for a solution which is physically unique, this should be
invariant under all the symmetries of the equation, and thus more easily accessible via a
complete symmetry reduction (a non-trivial implementation of this remark encounters more
difficulties than one would think at first). At the level of then-dimensional SDE, one would
hope to be able to use symmetries to obtain a reduction of order, as for deterministic ODEs;
however, this problem is not discussed here.

It should be noted that we do not consider transformations acting directly on then-
dimensional Wiener processw(t) (apart from those induced by a reparametrization of the
time variablet), see the final example 10 in section 6.

Although our original physical motivation to perform this study was provided by KPZ
theory [19–21], and thus by stochastic PDEs, we were able to develop the theory in a rigorous
way only for stochastic ODEs. We hope extension to PDEs will be possible (maybe by some
reader of the present work) in the future; this could help in determining invariance properties
of the measure for stochastic PDEs.

1. Symmetry of a deterministic differential equation

We will first recall the geometrical ideas lying behind the Lie-point symmetry approach to
differential equations [1–8], and in order to do this let us consider the simplest case, i.e. a
first-order ODE inR1,

1 ≡ dx

dt
− f (t, x) = 0. (1.1)

If we consider the spaceM = R3 with coordinates{t, x, ẋ}, then (1.1) identifies a manifold
in M, called the solution manifold for1,

S1 = {(t, x, y) : y = f (t, x)}. (1.2)

If we now consider vector fields inM, which we write as

X = τ(t, x, y)∂t + ξ(t, x, y)∂x +ψ(t, x, y)∂y (1.3)

the problem of determining theX (that is, theτ, ξ, ψ) which leaveS1 invariant is a classical
one. It is important to stress that, as the invariance ofS1 underX amounts to requiring that

X : S1→ TS1 (1.4)

we are reduced to a problem on the tangent space, and actually one ends up withlinear PDEs.
However, as in our casey is the time derivative ofx, we cannot change the three coordinates

in M independently, neither is appropriate (in view of the physical interpretation) that the
change in thex and t can depend ony. Thus, we are naturally led to restrict the class of
transformations: we require to have point transformations in the(t, x)-plane, i.e.τ = τ(t, x),
ξ = ξ(t, x), and that the transformation iny corresponds to the transformation onẋ induced
by the transformation acting in the(t, x)-plane.
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Thus we will consider Lie-point vector fields in the space of dependent and independent
variables, in this case

X0 = τ(t, x)∂t + ξ(t, x)∂x (1.5)

and theX acting onM should then be obtained as the ‘prolongation’ ofX0 to this space.
TheX0 whose prolongationX leavesS1 invariant represent the (Lie-point)symmetry

generatorsfor the equation1.
It is clear how to generalize this approach to the case of a system of first- (or higher-)

order ODEs inRn, or even to a PDE of orderN for the fieldsu ≡ {u1, . . . , up} depending
on {t;x} ≡ {t; x1, . . . , xn}. Theprolongation formula, giving the action induced by a vector
field

X0 = τ(t,x,u) ∂
∂t

+ ξ i(t,x,u)
∂

∂xi
+ φα(t,x,u)

∂

∂uα
(1.6)

(summation over the repeated indexi = 1, . . . , n andα = 1, . . . , p) on the spaceJ =
R×Rn×Rp ×U(1)× · · · ×U(N) (whereU(k) is the space of partial derivatives of orderk of
theu’s; the spaceJ is also called thejet spaceof orderN ), is derived explicitly, e.g., in [1],
and is given (withJ a multi-index) byX∗0 = X0 +

∑
α,J φ

α
J ∂/∂u

α
J , with

φαJ = DJ
(
φα −

n∑
i=1

ξ iuαi

)
+

n∑
i=1

ξ iuαJ ,i . (1.7)

On physical grounds, as already mentioned, it is preferable to consider only
transformations such that the independent variables are transformed independently of the values
assumed by the fields, i.e. such thatτ andξ i do not depend on theu; also, we are primarily
interested in evolution equations, and it is worth remarking that, in order to guarantee that the
considered transformations take evolution equations into evolution equations (i.e. time keeps
its distinguished role), we should also ask thatτ does not depend onx. Thus, in the end we
want to consider transformations of the form [4]

X0 = τ(t) ∂
∂t

+ ξ i(t;x) ∂
∂xi

+ φα(t,x,u)
∂

∂uα
(1.8)

for which the prolongation formula is somehow simpler than the general one (and will be given
explicitly below in section 4 for the case of interest); we will actually deal only withp = 1
(the fieldu(x, t) representing a probability density).

Definition. The vector fields (and, in particular, symmetry generators) of the form (1.8) will
be called ‘fibre-preserving’, or simply projectable.

We will also, with (a common) abuse of language, write simply ‘symmetry’ to mean
symmetry generators or infinitesimal symmetries; this should not cause any confusion, as in
this paper we will not consider discrete or finite symmetries at all.

Let us now consider, in particular, a system of ODEs, which we write in the form

ẋi − f i(t;x) = 0. (1.9)

If we act on(t;x) byX0 = τ(t;x)(∂/∂t ) + ξ i(t;x)(∂/∂xi) we are operating an infinitesimal
transformation

xi → x̃i = xi + εξ i(t;x)
t → t̃ = t + ετ(t;x)

(1.10)
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obviously knowing howx and t change enables us to determine how theẋ change as well:
with some computation, or applying the prolongation formula [1–4], we obtain

ẋi ≡ vi → ṽi = vi + εχi(t;x, v) (1.11)

where explicitly

χi = ∂t ξ i + ẋj ∂j ξ
i − ẋi∂t τ − ẋi ẋj ∂j τ (1.12)

the last term disappears if we consider projectable vector fields. By applying the prolonged
vector field

X
(1)
0 = X0 + χi(∂/∂ẋi) (1.13)

on (1.9) we obtainτ∂tf i + ξ j ∂jf i − χi = 0; using the expression forχi given above,
substituting forẋi according to (1.9) itself—which ensures we are onS1—and requiring this
to vanish, we obtain thedetermining equationsfor the generators of Lie-point symmetries of
the dynamical system (1.9), i.e.

Proposition. The symmetry generators for the dynamical systems (1.9) are vector fields
X0 = τ(∂/∂t ) + ξ i(∂/∂xi) with the functions(τ, ξ) satisfying(

τ∂t + ξ j · ∂j
)
f i − (∂t + f j · ∂j

)
ξ i + f i

(
∂t + f j · ∂j

)
τ = 0. (1.14)

Introducing the notation

{f, ξ}i := (f j · ∂j )ξ i − (ξ j · ∂j )f i (1.15)

we notice that for projectable symmetries, i.e. forτ = τ(t), we obtain the

Corollary 1. The projectable symmetries of (1.9) are given by vector fieldsX0 as above with
(τ, ξ) satisfying

∂t (ξ
i − τf i) + {f, ξ}i = 0. (1.16)

For given functionsf i(t;x) these partial differential equations always [3] have non-trivial
solutionsτ(t) andξ i(t;x), for example, we can fixτ(t) or ξ i(t;x) and computeξ i(t;x) or
τ(t). Although an infinite number of symmetries of (1.16) exist, there is no constructive way
to find them.

For further detail on symmetries of (deterministic) ODEs and PDEs, and applications, the
reader is referred to [1–8].

2. Symmetries of stochastic ODEs: I

Now, let us turn to stochastic equations [9–13], and let us consider an Ito equation

dxi = f i(t;x) dt + σ ik (t;x) dwk (2.1)

wheref andσ are smooth functions,σ(t;x) is a non-zero matrix and thewk are independent
homogeneous standard Wiener processes, so that

〈|wi(t)− wj(s)|2〉 = δij (t − s). (2.2)

Equation (2.1) should be seen as a map from the vector Wiener processw(t) =
{w1(t), . . . , wn(t)} to the stochastic process undergone by{x1(t), . . . , xn(t)}, and its meaning
is precisely that of defining the vector stochastic processx(t).
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We recall that the Ito equation (2.1) is equivalent to the Stratonovich equation

dxi = bi(t;x) dt + σ ik (t;x) ◦ dwk (2.3)

with (we writeσik ≡ σ ik for ease of notation)

bi(t;x) = f i(t;x)− 1

2

[
σkj (t;x)

∂σ Tij (t;x)
∂xk

]
. (2.4)

Considering Stratonovich equations can be more convenient from the point of view of keeping
track of the action of changes of coordinates (as it was done, for example, in Misawa’s work
[14]), since these transform according to the familiar chain rule; on the other hand, if we
consider a functiony = 8(x), its evolution in terms of Ito equations is described by theIto
formula:

dyi = ∂8i

∂xj
dxj +

1

2

∂28i

∂xj∂xk
dxj dxk

= [f j∂j8i + 1
2∂

2
jm8

i(σσT )jm
]

dt +
[
(∂jφ

i)σ jk
]

dwk. (2.5)

We also recall that to the Ito equation (2.1) (or the equivalent Stratonovich equation) is
associated the corresponding Fokker–Planck equation

∂tρ = −∂i(f iρ) + 1
2∂

2
ij [(σσ

T )ijρ] (2.6)

describing the evolution of the probability measureρ(t;x) for the stochastic process described
by (2.1). Equations (2.1) and (2.6) contains the samestatistical information [9–13] (this
statement should be read in the light of the remark presented in the introduction), providedσ

satisfies thenon-degeneracy conditionσσT 6= 0, which we will assume throughout this paper.

Remark 1. Equation (2.6) describes the time evolution of the probability measureρ(x, t)

under the stochastic process (2.1). It is obvious that for this interpretationρ(x, t) should be
subject to the condition∫ +∞

−∞
ρ(x, t)dx1 . . .dxn = 1 (2.7)

(it is enough to impose this att = 0); this is relevant in connection with the allowed
transformations of(x, t; ρ): only transformations preserving this normalization do represent
symmetries of the Fokker–Planck equation compatible with its probabilistic interpretation, and
one should expect a correspondence between symmetries of the Ito equation and these—rather
than all the symmetries of the Fokker–Planck—as we discuss below.

Remark 2. As stressed above, the equivalence between the Ito equation (2.1) and the
associated Fokker–Planck equation (2.6) (with the additional constraint (2.7)) is only statistical.
(Recall this holds only for the Ito equation considered as defining a one-point process). It is
important to stress that different Ito equations which have the samef and different matrices
σ can give the same termσσT and thus the same Fokker–Planck equation; a simple example
is provided, for example, byσ orthogonal (σ ∈ O(n)): in this case we have by definition
σσT = I , so that all the Ito equations with the samef and any orthogonal matrixσ give the
same Fokker–Planck equation. Similarly,σ andσ̃ = σB, with B any orthogonal matrix, will
give the same Fokker–Planck equation (and converselyσ andσ̃ give the same Fokker–Planck
equation (with the samef ) only if there is an orthogonal matrixB such that the above relation
is satisfied [12]).



Lie-point symmetries and SDEs 8491

If we consider a continuous variation ofσ , sayσ + εγ , in the Ito equation, the associated
Fokker–Planck equation remains unchanged provided(σ + εγ )(σ + εγ )T = σσT , which at
orderε is simplyσγ T + γ σT = 0 (which doesnot imply γ = 0); this simple observation will
be of use in section 5.

The one-point stochastic processes described by two different Ito equations having the
same associated Fokker–Planck equation have the same statistical properties (the probability
measures evolve in the same way), butare different: the same realization of the Wiener process
w(t) leads to different sample paths.

It is may be worth stressing that if we have Fokker–Planck equations which are equivalent
modulo a simple transformation, e.g. are mapped one into the other by a rescaling of the time
variable, but have, however, differentσ and/orf , these willnotbe considered equivalent.

Let us now consider a near-identity change of coordinates, passing fromx to y via

xi → yi = xi + εξ i(t;x). (2.8)

Using the Ito formula, we have

dyi = dxi + ε dξ i

= f i(t;x) dt + σ ik (t;x) dwkε
{[
∂t ξ

i + f j∂j ξ
i + 1

2(σσ
T )jk∂2

jkξ
i
]

dt + (∂j ξ
i)σ

j

k dwk
}
(2.9)

at first order inε,

f i(t;x) = f i(t;y)− εξj (t;y) ∂f
i

∂yj
σ ik (t;x) = σ ik (t;y)− εξj

∂σ ik

∂yj
. (2.10)

In other words, the transformation (2.8) maps the Ito equation (2.1) into a new Ito equation

dyi = f̃ i(t;y) dt + σ̃ ik (t;y) dwk (2.11)

where we have

f̃ i = f i + ε
[
∂t ξ

i + f j∂j ξ
i − ξ j ∂jf i + 1

2(σσ
T )jk∂2

jkξ
i
]

σ̃ ik = σ ik + ε
[
σ
j

k ∂j ξ
i − ξ j ∂jσ ik

]
.

(2.12)

When the transformation (2.8) maps (2.1) into itself, i.e. when (2.11) coincides with (2.1)
(up to terms o(ε)), we say that (2.8) is a (Lie-point) spatialsymmetryof (2.1). Thus, Lie-point
symmetries of (2.1) are identified by the vanishing of terms O(ε) in (2.12):

Theorem 1. The Lie-point spatial symmetries of the Ito equation (2.1) are given byX0 =
ξ i(t;x)(∂/∂xi) with ξ i(t;x) satisfying the determining equations for spatial symmetries:

∂t ξ
i + (f j · ∂j )ξ i − (ξ j · ∂j )f i + 1

2(σσ
T )jk∂2

jkξ
i = 0

(σ
j

k · ∂j )ξ i − (ξ j · ∂j )σ ik = 0.
(2.13)

We could of course also consider transformations acting ont : in this case we would be
modifying the processesw(t) as well, and should pay some extra care; we will consider this
case in the next section.

Remark 3. Note that forσ = 0 equations (2.13) reduce to the familiar determining equations
for Lie-point time-independent symmetries of a dynamical systemẋi = f (t;x) [4].
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Remark 4. If σ = σ(t) does not depend on the spatial variables, the second equation of (2.13)
reduces toσ jk ∂j ξ

i = 0, which in turns imply the vanishing of the term(σσT )jk∂2
jkξ

i , which in

this case can be rewritten asσ kp∂k(σ
j
p∂j ξ

i). Thus, equations (2.13) are in this case equivalent
to the determining equations for symmetries of the deterministic part of the Ito equation (see
(1.16) and recall now that we are assumingτ = 0) with the additional conditionσ jk ∂j ξ

i = 0.

Remark 5. In studying the symmetry of deterministic dynamical systems, one introduces the
bracket{f, g} := (f · ∇)g − (g · ∇)f ; with this notation, equation (2.13) reads

∂t ξ
i + {f, ξ}i + 1

2(σσ
T )jk∂2

jkξ
i = 0

{σk, ξ}i = 0.
(2.14)

3. Symmetry of stochastic ODEs: II

We will consider again the Ito equation (2.1) and how this is transformed under a change of
coordinates, but now we will consider (projectable) transformations which involve the time as
well, i.e. we will not imposeτ = 0 in (1.8), and thus (2.8) should be supplemented with

t → s = t + ετ(t). (3.1)

Then, equation (2.9) applies, with

f i(t;x) = f i − εξj ∂f
i

∂yj
− ετ(s)∂sf i

σ ik (t;x) = σ ik − εξj
∂σ ik

∂yj
− ετ(s)∂sσ ik

dwk = (1− ε∂sτ/2) dw̃k

dt = (1− ε∂sτ ) ds.

(3.2)

(The transformations of the Wiener processw(t) into w̃(t) is discussed in appendix A.)
Obviously in the right-hand side of the above equation we have omitted the dependence of
f, σ, ξ for ease of notation, but these should always be seen as functions ofs andy.

Substituting (2.1) in (2.9) and using (3.2), we see that the Ito equation (2.1) is now mapped
into a new Ito equation (2.11), again with

f̃ i(s;y) = f i(s;y) + ε(δf )i σ̃ ik (s;y) = σ ik (s;y) + ε(δσ )ik (3.3)

and is mapped to itself if the terms of orderε in this vanish; again from (2.1) and (2.9), with
(3.2), and with a slight change of notation to compare easily with the previous theorem 1, we
have proven that:

Theorem 2. The projectable vector fieldX0 = τ(t)(∂/∂t) + ξ i(t;x)(∂/∂xi) is a symmetry
generator for the Ito equation (2.1) if and only ifτ(t)and theξ i(t;x)satisfy thefull determining
equationfor projectable symmetries of an Ito equation:

∂t ξ
i + (f j · ∂j )ξ i − (ξ j · ∂j )f i − ∂t (f iτ ) + 1

2(σσ
T )jk∂2

jkξ
i = 0

(σ
j

k · ∂j )ξ i − (ξ j · ∂j )σ ik − τ∂tσ ik − 1
2σ

i
k∂t τ = 0.

(3.4)

These aren + n2 equations for then + 1 functionsξ i, τ ; thus forn > 1 they can have
a solution only in very exceptional cases. This should not be surprising, as symmetry is a
non-generic property.
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Remark 6. With the notation introduced in remark 5, and also writing− 1
2σσ

T = A, these
read

∂t
(
ξ i − τf i) + {f, ξ}i − Ajk∂2

jkξ
i = 0

{σk, ξ}i − τ∂tσ ik − 1
2σ

i
k∂t τ = 0.

(3.5)

Remark 7. The symmetries which are linear inx, i.e. such thatξ i(t;x) = Mi
j (t) x

j , are given
by the same equations as for symmetries of the deterministic part of the Ito equation (2.1),
which is nothing else but (1.16), plus the additional condition

Mi
jσ

j

k = Mj
px

p∂jσ
i
k + τ∂tσ

i
k + 1

2σ
i
k∂t τ (3.6)

for τ = 0 these simplify further. In particular, ifτ = 0 andσ is at most linear inx,
σ ij = Sij (t) +Rijk(t) x

k, then (3.6) read

Mi
jS

j

k = 0 Mi
jR

j

kp = RikjMj
p. (3.7)

Remark 8. A relevant case in applications is the one wheref i = f i(x) andσ ik = σ ik (t) or
evenσ ik = constant= Sik; this corresponds to an autonomous dynamical system subject to
a noise which depends only ont or even a constant noise. In this case (3.4) and (3.5) can
be discussed quite completely. Indeed, withσ independent of the spatial coordinatesx the
second of these reads

2σ jk ∂j ξ
i = 2τ∂tσ

i
k + σ ik∂t τ (3.8)

as the right-hand side only depends ont , by differentiating with respect toxm we obtain the
equationσ jk (∂

2ξ i/∂xj ∂xm) = 0: i.e. the (symmetric) matrix of second derivatives ofξ i ,Hi
jm

must be such thatσHi = Hiσ = 0. Notice that, in particular, ifσ ik (t) = λ(i)(t) δik with all
λ(i) 6≡ 0 (or, however, ifσ−1 exists), this means thatξ can be at most linear inx.

4. Symmetries of the Fokker–Planck equation

We will now derive the determining equations forprojectablesymmetry generators of the
Fokker–Planck equation (2.6) in arbitrary spatial dimensions; as already mentioned in the
introduction, general symmetries of the Fokker–Planck equations (with some limitations on
σ ) in one and two space dimensions have been completely classified [16–18].

It will be convenient to rewrite the Fokker–Planck equation as

ut +Aij ∂2
ij u +Bi∂iu +Cu = 0 (4.1)

where∂iu denotes the partial derivative with respect toxi and so on; and the coefficients
A,B,C depend ont andx only (i.e. do not depend onu) and are given explicitly by

Aij (t;x) = − 1
2(σσ

T )ij

Bi(t;x) = f i − ∂j (σσT )ij
C(t;x) = (∂i · f i)− 1

2∂
2
ij (σσ

T )ij .

(4.2)

We need to derive the second prolongationX(2)0 of the projectable vector field (1.8), and
more precisely we need to compute the coefficients8t,8i,8ik of, respectively,∂/∂ut , ∂/∂ui
and∂/∂uik in X(2)0 .
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Using the general prolongation formula and the fact that forX0 projectable one has
τu = ξ iu = ∂iτ = 0, we obtain with standard algebra

8t = φt − ξ jt ∂ju + (φu − τt ) ut
8i = ∂iφ + φu∂iu− ∂iξ j ∂ju
8ik = ∂2

ikφ + ∂kφu∂iu + ∂iφu∂ku− ∂2
ikξ

j ∂ju + φu∂
2
iku− ∂iξ j ∂2

jku

−∂kξ j ∂2
ij u + φuu∂iu∂ku.

(4.3)

ApplyingX(2)0 on (4.1) yields

8t +Aik8ik +Bi8i +Cφ +2 = 0 (4.4)

with

2 = (ξ j ∂jAik + τAikt )∂
2
iku + (ξ j ∂jB

i + τBit )∂iu + (ξ j ∂jC + τCt ) u. (4.5)

Using the above explicit expressions for the8’s, and substituting forut according to (4.1),
we obtain an expression of the form (see below for the explicit expressions of the coefficients)

ηik(t;x, u)∂iu∂ku + γ ik(t;x, u)∂2
iku +µi(t;x, u)∂iu + ν(t;x, u) = 0 (4.6)

which must be zero forX0 to be a symmetry of the FP equation. This means, of course, that
theη, γ, µ, ν must vanish separately: in this way we obtain the determining equations

ηik ≡ Aikφuu = 0

γ ik ≡ τAikt + τtA
ik + ξm∂mA

ik − Aim∂mξk − Amk∂mξ i = 0

µi ≡ τBit + τtB
i + ξm∂mB

i − Bm∂mξ i − ξ it +Aik∂kφu +Ami∂mφu − Amk∂2
mkξ

i = 0

ν ≡ φt − (φu − τt )Cu +Aik∂2
ikφ +Bi∂iφ +Cφ + (ξm∂mC + τCt ) u = 0.

(4.7)

Let us recall that we assumed thatσ is not degenerate, so that theAik are not all zero. The
first of these means thenφuu = 0, and we can write

φ(t;x, u) = α(t;x) + β(t;x) u (4.8)

notice that now, sinceτ and theξ i ’s do not depend onu, all theu dependences are explicit.
The second equation of (4.7) is not changed, while the third one can now be written as

τBit + τtB
i + ξm∂mB

i − Bm∂mξ i − ξ it +Aik∂kβ +Ami∂mβ − Amk∂2
mkξ

i = 0 (4.9)

as for the last one, this decouples into two separate equations (since in it the coefficient ofu

and the term not containingu must vanish separately): the equation involving the coefficient
of u yields

βt + ∂t (τC) + ξm∂mC +Aik∂2
ikβ +Bi∂iβ = 0 (4.10)

while terms not containingu give

αt +Aik∂2
ikα +Bi∂iα +Cα = 0. (4.11)

This is nothing else but the FP equation itself forα, and its appearance is a consequence of the
linearity of the FP equation, as it expresses the linear superposition principle [1–4]; we will
thus not consider it any more in our discussion.

Summarizing, we have proven that
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Theorem 3. The projectable symmetries of the Fokker–Planck equation (4.1) are given by
vector fields in the form (1.8) withφ satisfying (4.8); apart from the trivial symmetries
Xα = α(t;x)∂u with α(t;x) satisfying (4.1), corresponding to the linear superposition
principle, the other symmetries are given by(τ, ξ, β) satisfying the determining equations
for projectable symmetries of the Fokker–Planck equation:

∂t (τA
ik) + (ξm∂mA

ik − Aim∂mξk − Amk∂mξ i) = 0

∂t (τB
i)− [ξ it +Bm∂mξ

i − ξm∂mBi
]

+ (Aik∂kβ +Ami∂mβ)− Amk∂2
mkξ

i = 0

∂t (τC) + βt +Aik∂2
ikβ +Bi∂iβ + ξm∂mC = 0.

(4.12)

5. Symmetries of the Ito equation versus symmetries of the associated Fokker–Planck
equation

We are especially interested in discussing how the symmetries of the partial differential
equation (4.1) and those of the symmetries of the system of stochastic ODEs (2.1) are related.

We notice that in the above equation (4.12), we have coefficientsA,B,C; however, these
are not independent functions: first of all,Aik = Aki , and moreover

Bi = f i + 2∂kA
ik C = ∂if i + ∂2

ikA
ik. (5.1)

Using this, equation (4.12) reads

∂t (τA
ik) +

(
ξm∂mA

ik − Aim∂mξk − Akm∂mξ i
) = 0[

∂t (ξ
i − τf i) + {f, ξ}i − Amk∂2

mkξ
i
]

−2
[
∂t (τ∂kA

ik) +Aik∂kβ − Amk∂2
mkξ

i − ∂kAmk∂mξ i + ξm∂2
kmA

ik
] = 0

∂t
[
β + τ(∂if

i + ∂2
ikA

ik)
]

+ f i∂iβ

+Aik∂2
ikβ + 2∂kA

ik∂iβ + ξm∂2
imf

i + ξm∂3
ikmA

ik = 0.

(5.2)

The equations of the above system can be simplified if one eliminates the term∂t (τ∂kA
ik)

in the second equation and the termτ(∂if i + ∂2
ikA

ik) in the third one. To eliminate∂t (τ∂kAik)
we multiply the first equation in (5.2) by 2, differentiate it with respect toxk and take the sum
over allk; then we add the resulting equation to the second equation in (5.2). This yields[

∂t (ξ
i − τf i) + {f, ξ}i − Amk∂2

mkξ
i
]− 2

[
Aik∂kβ +Aim∂2

mkξ
k
] = 0. (5.3)

Next, we eliminateτ(∂if i + ∂2
ikA

ik) in the third equation of (5.2). First of all, we differentiate
the second equation with respect toxi and sum it on alli. Next, we differentiate the first
equation with respect toxk andxi , take the sum over the indicesi andk, and multiply the
resulting equation by−1. Finally, we add to the third equation the two equations obtained in
this way, obtaining the following equivalent form of the system (5.2):

∂t (τA
ik) +

(
ξm∂mA

ik − Aim∂mξk − Akm∂mξ i
) = 0[

∂t (ξ
i − τf i) + {f, ξ}i − Amk∂2

mkξ
i
]− 2

[
Aik∂kβ +Aim∂2

mkξ
k
] = 0[

∂t + f i∂i − Aik∂2
ik

][
β + ∂mξ

m
] = 0.

(5.4)

We remind the reader that on solving these one obtains the functionsτ(t), ξ i(t;x) andβ(t;x)
which determine the symmetries (apart from the trivialXα ones, see above) of the Fokker–
Planck equation (4.1) via (1.8) and (4.8).
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Let us consider the first equation of (5.4): recalling thatAik = − 1
2σ

i
j σ

k
m δ

jm, and taking

away the common factor12, this is rewritten as

σ ij
[
σmj ∂mξ

k − ξm∂mσ kj − τ∂tσ kj − 1
2σ

k
j ∂t τ

]
+σ kj

[
σmj ∂mξ

i − ξm∂mσ ij − τ∂tσ ij − 1
2σ

i
j ∂t τ

] = 0. (5.5)

Notice that the two terms are obtained from each other under the exchangei ↔ k. For
later discussion, we denote the term in square brackets as0: with this (5.5) reads simply as
σ ij0

k
s δ

js + σ kj 0
i
s δ

js = 0.
If now we look back at the second equation of (3.5), this is just the same as the terms in

square brackets: this means that if the second equation of (3.5) is satisfied, then necessarily
the first of (5.4) is also satisfied.

Let us now focus on the second equation of (5.4): obviously the terms in the first square
bracket are just the left-hand side of the first equation of (3.5): if the latter holds, then the
former reduces to

Aik∂kβ = −Aim∂2
mkξ

k. (5.6)

Obviouslyβ is not present in symmetries of the Ito equation, so we can choose it so as to
satisfy the third equations of (5.4) and (5.6): for this it suffices to choose

β = −∂mξm + c0 = −div(ξ) + c0. (5.7)

We have thus proved that

Theorem 4. LetX0 = τ(∂/∂t) + ξ i(∂/∂xi) be a symmetry of the Ito equation (2.1). Then
X0 can be extended to a symmetryX1 = X0 + φ(∂/∂u) of the associated Fokker–Planck
equation (4.1); the extension is given byφ = α(t,x) + β(t;x) u with α a solution of (4.1)
itself andβ satisfying (5.7).

We would now like to consider the opposite question, i.e. if and when a symmetry of the
Fokker–Planck equation associated with an Ito equation can be projected to a symmetry of the
Ito equation itself. For this is obviously necessary that (5.6) holds, but (5.7) is a sufficient (but
not necessary) condition for (5.4), and the same is true of0 = 0.

As mentioned above, we expect a completestatistical equivalence of the description
of a (one-point) stochastic process in terms of its Ito equation (2.1) or of the associated
Fokker–Planck equation (2.6); however, as we also mentioned (see remark 1) the probabilistic
interpretation of (2.6) requires one to restrict it to functions satisfying the normalization
condition (2.7); moreover, the equivalence is only statistical: we could have a transformation
which maps an Ito equation into a different one with the same statistical properties (see remark
2) and thus the same associated Fokker–Planck equation: this would be a symmetry of the
Fokker–Planck equation but not of the Ito equation.

Thus we expect that there is a (partial) correspondence between symmetries of (2.1) and
those symmetries of (2.6) which preserve the normalization condition (2.7), rather than all
symmetries of (2.6).

The condition to be satisfied for a vector field of the form (4.8) to preserve (2.7) is discussed
in appendix B, and is simply that the integral ofα(x, t) in dx vanishes (here we are considering
α ≡ 0), and that

β = −div(ξ). (5.8)

The latter condition automatically guarantees that the third equation of (5.4) holds, and
also that the second square bracket in the second equation of (5.4) vanishes, so that this equation
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coincides with the first equation of (3.5); it remains to discuss the relation between the first
equation of (5.4) and the second equation of (3.5).

As remarked above, these two equations can be rewritten asσ0T +0σT = 0 and0 = 0.
The second of these implies the first, but the converse is not true: there isnot a complete
equivalence. This should not be too surprising: it just corresponds to the possibility that the
same Fokker–Planck equation can correspond to different Ito equations, so the transformations
with 0 6= 0 butσ0T +0σT = 0 will be those which map an Ito equationE0 into a different Ito
equationE1 which has thesameFokker–Planck associated equation, this transformation will
be a symmetry of the Fokker–Planck equation without being a symmetry of the Ito equation.
Indeed, in remark 2 it was noticed thatσ0T +0σT = 0 (with0 6= 0) is precisely the condition
for the occurrence of this situation.

Theorem 5. LetX1 = X0 +φ(∂/∂u), withX0 = τ(t)(∂/∂t)+ξ i(x, t)(∂/∂xi), be a symmetry
of the Fokker–Planck equations (2.6) and (4.1) associated with the Ito equation (2.1); then this
preserves the normalization condition (2.7) if and only ifφ(x, t; u) = α(x, t)+β(x, t) uwith∫
α dx = 0 andβ = − div(ξ). In this caseX0 transforms the Ito equation into a (generally,

different) Ito equation with the same statistical properties; if moreover0 defined in (5.5) satisfy
0ik = 0, thenX0 is a symmetry of the Ito equation (2.1).

As implied by the remark presented in the introduction, in the above theorem it is
understood that the statistical properties which remain unchanged refer to the one-point process
described by the Ito equations, information on then-point process being, in principle, not
accessible via the Fokker–Planck equation.

Notice that if we are analysing a given Fokker–Planck equation, we can consider at once all
the Ito equations compatible with it; the last part of the above theorem can be reformulated by
saying thatX0 is a symmetry only for those Ito equations (among those having the considered
associated Fokker–Planck equation) whoseσ is such as to satisfy0 = 0.

Remark 9. It is easy to check that the trivial symmetriesξ i = 0, τ = 0 andβ = c0, which are
always symmetries of both the Ito (2.1) and the Fokker–Planck (4.1) equations, are solutions
of (3.5) and (5.4), as they should be.

Remark 10. From the above system (5.4), restricting to the case wheref (t, x) = f (x) and
σ(t, x) = σ(x), we recover the results of Cicogna and Vitali [16] for the one-dimensional
setting. From (5.2) it is also possible to recover the results of Shtelen and Stogny [17] for
the two-dimensional Kramers equation, as well as the recent results of Finkel [18] for the
two-dimensional Fokker–Planck equation

ut − uxx
2
− uyy

2
+
a1

x
ux + a2uy − a1

x2
u = 0 (5.9)

wherea1 anda2 are constants anda1 > 0.

Remark 11. The discussion of this section shows that if we are looking for the symmetries
of a Fokker–Planck equation compatible with its probabilistic interpretation as the diffusion
equation associated with an Ito equation, we do not have to deal with the general form (1.6)
of the symmetry vector field, but we can use instead the ansatz

X0 = τ(t) ∂
∂t

+ ξ i(t,x)
∂

∂xi
− div(ξ) u

∂

∂u
. (5.10)

Needless to say, this ansatz does substantially simplify the analysis of symmetries, which is
quite involved in the general case (see, e.g., [18]).
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6. Examples

In this section we treat some simple cases to illustrate our results and to check the
correspondence between symmetries of a stochastic ODEs and of the associated Fokker–
Planck equation. Symmetries of Fokker–Planck equations in one and two spatial dimensions
were studied in [16, 17]; we will use these works to check many of our results.

In the following,α(x, t) will denote an arbitrary solution of the Fokker–Planck equation.
In all cases, the Fokker–Planck equation admits the symmetriesXα = α(x, t) ∂u and the
scaling symmetryX0 = u∂u, both implied by the linearity of the equation; notice that
the latter changes the normalization of solutions (and should therefore be discarded in
view of the probabilistic interpretation of the Fokker–Planck equation), while the former
leaves normalization unchanged (and is thus acceptable in the present context) only for∫
α(x, t)dx1 . . .dxn = 0; we will not discuss this point any further in the following example.

Example 1. As the first one-dimensional example, we consider the casef (t, x) = 0,
σ(t, x) = σ0 = constant6= 0, i.e. the equation

dx = σ0 dw(t) (6.1)

which represents a free particle subject to constant noise. The corresponding Fokker–Planck
equation is simply the heat equationut = (σ 2

0 /2) uxx . The symmetries of the heat equation
are well known to be [1]

v1 = ∂t
v2 = ∂x
v3 = u∂u
v4 = σ 2

0 t∂x − σ0xu∂u

v5 = 2t∂t + x∂x

v6 = t2∂t + xt∂x − 1
2(t + x2/σ 2

0 ) u∂u

vα = α(x, t)∂u.

(6.2)

Of these,v1, v2 andv5 (which do not act onu) are also symmetries of the Ito equation (6.1),
as is easily checked using (3.4). Notice that (5.8) is satisfied for these, and is not satisfied for
v3, v4 andv6.

Let us check thatv1, v2 andv5 do actually span the symmetry algebra of (6.1): in this case
(3.4) reads simplyξt + 1

2σ
2
0 ξxx = 0 andξx − 1

2τt = 0; differentiating the latter inx we obtain
ξxx = 0 (sinceτ does not depend onx), and thereforeξ = a(t) x +b(t); plugging this into the
first equation we easily get thata(t) andb(t) are actually constants, and thus

ξ(x, t) = c1x + c2τ(t) = 2c1t + c3 (6.3)

thereforev1, v2, v5 do indeed span the symmetry algebra of (6.1).

Example 2. Let us now consider the casef (t, x) = 1, σ(t, x) = x, i.e. the Ito equation

dx = dt + x dw(t). (6.4)

Insertingf = 1 andσ = x into (3.5), these readξt − τt + ξx + (x2/2)ξxx = 0 and
xξx − ξ − (x/2)τt = 0. The latter has a general solution (as easily seen, for example, by
differentiating twice inx) ξ(x, t) = (x/2) ln(x)τt + xa(t); inserting this into the former one
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and requiring the vanishing of the coefficients ofx ln(x), ln(x), x and of thex-independent
terms we have thata(t) = 0 andτ(t) = b0, whereb0 is a constant. This meansξ = 0.

Thus, for this choice of functionsf (t, x) and σ(t, x) equations (3.5) and (5.4) only
have the solutionsξ = 0, β = c0 andτ = b0, which correspond to the trivial symmetries.
These symmetries (to which one should addvα = α(x, t) ∂u with acceptableα) are all the
symmetries of the Fokker–Planck equation [16] and of the Ito equation. Notice that (5.8)
enforcesβ = c0 = 0.

Example 3. We next consider the casef (t, x) = x, σ(t, x) = 1, i.e. the Ito equation

dx = x dt + dw(t) (6.5)

the corresponding Fokker–Planck equation is

ut − 1
2uxx + xux + u = 0. (6.6)

The symmetries of (6.6) are (see [16])

v1 = ∂t
v2 = u∂u
v3 = et ∂x

v4 = e−t [∂x + 2xu∂u]

v5 = e2t [∂t + x∂x − u∂u]
v6 = e−2t [−∂t + x∂x + 2x2u∂u]

vα = α(x, t)∂u.

(6.7)

Notice thatv1, v3 andv5 satisfy (5.8), which is not satisfied byv2, v4 andv6.
As for symmetries of the Ito equation (6.5), we write equations (3.4) in this case, and

again differentiate the second one inx, obtainingξ = a(t) x + b(t), τt = 2a(t); from the first
equation we then getξ(x, t) = e2t c1x+et c2, τ(t) = e2t c1+c3. This shows that the symmetries
of (6.5) arev1, v3 and

ṽ5 = e2t [∂t + x∂x ] (6.8)

which is the projection ofv5 to (x, t)-space.

Example 4. As a first example in two space dimensions (with coordinates(x1, x2) = (x, y)),
we choose

f =
(

y

−k2y

)
σ =

(
0 0

0
√

2k2

)
. (6.9)

Thus, we are considering the equations (see also [17])

dx = y dt

dy = −k2y dt +
√

2k2 dw(t)
(6.10)

with k2 a positive constant.
The corresponding Fokker–Planck equation is the Kramers equation

ut = k2uyy − yux + k2yuy + k2u (6.11)
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the symmetries of this were studied in [17] and are

v1 = ∂t
v2 = u∂u
v3 = e−k

2t
[
k−2∂x − ∂y

]
v4 = t∂x + ∂y − 1

2(y + k2x) u∂u

v5 = ∂x
v6 = ek

2t
[
k−2∂x + ∂y − yu∂u

]
vα = α(x, y, t)∂u.

(6.12)

Herev1, v3 andv5 satisfy (5.8), while forv2, v4 andv6 this is violated.
According to our definition, the symmetries of equations (6.10) are againv1, v3 andv5.

Notice that, in this case, from the second equation of (3.4) if we takei = k = 2 we can
integrate the obtained equation onx2 = y to getξy = 1

2τty + g(x, t). For i = 1 andk = 2 we
obtain thatξ1 does not depend onx2, soξ1 = a(x1, t). Substituting the functionsξ1 andξ2 in
the first equation of (3.4) and takingi = 1 and 2 one obtains two linear equations in powers
of x2. Equating to zero the coefficients of powers ofx2- and thex2-independent terms in both
equations we obtain

τ = c1 ξ1 = c3k
−2e−k

2t + c5 ξ2 = −c3e−k
2t . (6.13)

Since divξ = 0, we also haveβ = 0 due to (5.8).

Example 5. We consider next the case

f =
(
a1/x

a2

)
σ =

(
1 0
0 1

)
(6.14)

i.e. the equation

dx = (a1/x) dt + dw1(t)

dy = a2 dt + dw2(t).
(6.15)

The associated Fokker–Planck equation is

ut = 1

2
(uxx + uyy) +

a1

x2
u− a1

x
ux − a2uy (6.16)

this has been studied by Finkel in [18], and its symmetries are

v1 = ∂t
v2 = u∂u
v3 = ∂y
v4 = 2t∂t + x∂x + (y + a2t)∂y − 2u∂u

v5 = −t∂y + (y − a2t) u∂u

v6 = t
[
t∂t + x∂x + y∂y

]
+
[
t (a1 + a2y − 1)− 1

2

(
x2 + y2 + a2

2t
2
)]
u∂u

vα = α(x, y, t)∂u.

(6.17)

The symmetries of (6.15) are spanned byv1, v3 andv4, and one can check that these satisfy
(5.8), and thatv2, v5 andv6 do not comply with it.
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Example 6. As discussed in section 5, the correspondence between normalization-preserving
symmetries of the Fokker–Planck equation and symmetries of the Ito equation is not complete;
as in previous examples there was always correspondence between symmetries of an Ito
equation and all the normalization-preserving symmetries of the associated Fokker–Planck
equation, we are now going to give a very simple example of a case in which this does not
happen.

Consider the two-dimensional Ito system (with zero drift)

dx1 = cos(t) dw1− sin(t) dw2

dx2 = sin(t) dw1 + cos(t) dw2
(6.18)

the corresponding Fokker–Planck equation is now just the two-dimensional heat equation
ut = 1

24u.
We can now immediately check that the vector fieldX0 = ∂t is a solution of (5.4) and thus

a symmetry of the Fokker–Planck equation; on the other hand, the second equation of (3.5) is
not satisfied and thusX0 is not a symmetry of (6.18). Obviously, the case of any orthogonal
σ with ∂tσ ik 6≡ 0 will be exactly the same.

In the previous examples, we have always considered one- or two-dimensional cases
for which the symmetries of the Fokker–Planck equation were known, and checked that the
symmetries of the Ito equations we were considering did indeed correspond to the symmetries
of the associated Fokker–Planck equations.

In the following examples we will considern-dimensional stochastic equations, and will
discuss the symmetries of the Ito equation and the normalization-preserving symmetries of the
associated Fokker–Planck equation, without attempting to determine other symmetries of the
latter, not interesting in the present context. Thesen-dimensional cases were obviously not
considered in the Cicogna–Vitali and the Finkel symmetry classifications [16, 18].

Example 7. We will start by consideringn uncoupled equations for equal ‘Langevin harmonic
oscillators’ subject to independent stochastic noise [9, 22]; this system hasf i = −xi and
σ ij = si δij , and thus is described by the Ito system

dxi = −xi dt +
√

2si dwi i = 1, 2, . . . , n (6.19)

(no sum oni) where we assume that all thesi are strictly positive; the corresponding Fokker–
Planck equation is

∂tu =
n∑
i=1

[
si∂

2
iiu + xi∂iu + u

]
. (6.20)

From the second equation of (3.5) we obtainξ i(x, t) = γ i(t) + 1
2τtx

i , and the first
equation of (3.5) shows then easily thatγ i(t) = die−t while τ = c1e−2t + c2, so that in
particularτt = −2c1e−2t . Therefore, equation (5.7) yieldsβ = nc1e−2t + d0, and (5.8) forces
d0 = 0.

Thus the symmetries of (6.20) compatible with its probabilistic meaning are spanned by
(here and in the following∂i ≡ ∂/∂xi)

v1 = ∂t

v2 = e−2t

[
∂t −

n∑
i=1

xi∂i + nu∂u

]
vα = α(x, t)∂u
vqi = e−t ∂i (i = 1, 2, . . . , n).

(6.21)
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Example 8. We will now consider the class of Ito systems in which the drift is a linear function,
f i(t;x) = Mi

kx
k (we assumeM 6= 0), and the matrixσ ij is constant; we will suppose that this

is invertible. Now the Ito equation (2.1) reads

dxi = Mi
kx
k dt + σ ik dwk. (6.22)

This system represents an Ornstein–Uhlenbeck process [22] and its corresponding Fokker–
Planck equation is (withA = − 1

2σσ
T )

ut − Aij ∂2
ij u +Mi

kx
k∂iu +Mk

k = 0. (6.23)

In this case (3.5) reads

∂t ξ
i +Mj

k xk∂j ξ
i − ξ jMi

j −Mi
kxk∂t τ +Ajk∂2

jkξ
i = 0

σ
j

k ∂j ξ
i − 1

2σ
i
k∂t τ = 0.

(6.24)

Taking the derivatives with respect toxm in the second of these, one hasσ jk ∂
2
jmξ

i = 0;
thanks to the invertibility ofσ , this implies ∂2

jmξ
i = 0 and we can writeξ i(t;x) =

Lij (t) x
j + P i(t). With this, (6.24) reads[

∂tL
i
k +LijM

j
k −Mi

jL
j
k − τtMi

k

]
xj +

[
∂tP

i −Mi
jP

j
] = 0

Lijσ
j
k − 1

2τtσ
i
k = 0

(6.25)

and in the first of these the two terms in square brackets have to vanish separately. Thus, we
obtain in matrix notation the system (hereθ(t) = τt )

∂tL + [L,M] = θM
Ṗ = MP
Lσ = (θ/2)σ.

(6.26)

Multiplying the last of these byσ−1 from the right, we obtainL = (θ/2)I , which
guarantees [L,M] = 0 and hence reduces the first one to

θt I = θM (6.27)

for M 6= I this entailsθ = 0 and thusL = 0, τ = c0; P will be a solution toṖ = MP ,
i.e. P(t) = exp[Mt ]P(0); this depends on then arbitrary constants identifying the initial
conditionP(0).

ForM = I , equation (6.27) yieldsθ = c1et and henceτ = c1et + c2; in this caseṖ = P
and thusP(t) = etP (0), which again depends on then arbitrary constants identifying the
initial conditionP(0).

As for β, we notice that div(ξ i) = Tr(L); therefore forM 6= I we haveβ = 0, while for
M = I we haveβ = (nθ/2).
Example 9. In many cases, relevant for applications, one considers Ito equations with

σ ik = b δik. (6.28)

In this case, the determining equations (3.5) reduce to

∂t (ξ
i − τf i) + {f, ξ}i = 0

ξ ik = (τt/2) δik
(6.29)

implying, in particular,ξ i(t;x) = hi(t) + (τt/2) xi and therefore div(ξ) = nτt/2= −β.
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Example 10. Finally, we now consider then-dimensional nonlinear case

dxi = −(1− λ‖x‖2) xi dt + dwi (6.30)

where‖x‖ is the norm of the vectorx. By insertingf i = −xi(1− λ‖x‖2) andσ ij = δij in the
determining equations (3.5) we obtain, from the second of these,ξ i(t;x) = hi(t) + (τt/2) xi .
Inserting this into the first equation of (3.5) and isolating the coefficients of different powers
of x, we find that forλ 6= 0 the only symmetry is given byv1 = ∂t , while for λ = 0 we are in
the situation discussed in example 7 and thus we also obtain the symmetries described there.

Notice that at first sight one could have thought that (6.30) had a rotation symmetry; this
is not the case because within the class of transformations we are considering we can rotate the
vectorx, but not the vector Wiener processw(t); transformations allowing us to rotatew(t)
as well will be considered elsewhere.

Appendix A

In this appendix we derive the formula used in (3.2) for the transformation induced on a Wiener
process by a near-identity change of the time coordinate,

t → s = t + ετ(t). (A.1)

Notice that physically we want the time transformation to be invertible; this requiresτ ′(t) >
−(1/ε).

Let us consider a Wiener processw(t): the probability that it undergoes a changez = dw
in the time intervalθ = dt has a density

dp(z; θ) = 1√
2πθ

e−z
2/θ dz (A.2)

however, once we pass tos as the time coordinate,

θ = dt = 1

1 + ετ ′
ds (A.3)

and (A.2) should be changed accordingly forw(t)expressed asw(s) ≡ w[t (s)]. If we consider,
however,

ζ =
√

1 + ετ ′ z (A.4)

and the stochastic process

w̃(s) =
√

1 + ετ ′w(s) (A.5)

it can immediately be checked that the probability thatw̃(s) undergoes a changeζ = dw̃ in
the time intervalθ = ds has a density which is just

dp̃(ζ ; θ) = 1√
2πθ

e−ζ
2/θ dζ. (A.6)

We interpret this by saying that under (A.1) the Wiener processw(t) is changed according
to (A.5). Notice that therefore, at first order inε,

dw̃ = (1 + ετ ′/2) dw (A.7)

this is precisely the formula used in section 3.



8504 G Gaeta and N R Quintero

Appendix B. Normalization of solutions

Let u = ρ(x, t) > 0 be a solution to the Fokker–Planck equation satisfying the normalization
condition (2.7)I = 1, where

I :=
∫ +∞

−∞
ρ(x, t)dx1 . . .dxn (B.1)

we want to discuss howI changes under a symmetry transformation.
First of all we recall that, under standard conditions on the coefficientsA(t,x), B(t,x),

C(t,x) appearing in (4.1), this normalization is preserved under the Fokker–Planck flow,
dI/dt = 0 [9–13, 22].

If now we operate an arbitrary transformation in which

t → t̃ = t + ετ(t) xi → x̃i = xi + εξ i(t,x) u→ ũ = u + εφ(t,x; u) (B.2)

we have thatρ(x, t)→ ρ̃(x, t) + εφ(t,x; u); for φ = βu (see section 4), this reads

ρ(x, t)→ ρ̃(x, t) + ε[α(x, t) + β(x, t)ρ(x, t)]. (B.3)

As for the volume element dx1 . . .dxn, under (B.2) this is changed into dx̃1 . . .dx̃n; using
dx̃i = dxi − ε∂ξ i/∂xj dxj + o(ε), we have that at first order inε,

dx̃1 . . .dx̃n = [1 + div(ξ)] dx1 . . .dxn. (B.4)

Thus, again at first order inε, I is changed tõI = I + εJ + O(ε2), where

J =
∫ +∞

−∞
{[β + div(ξ)]ρ + α} dx1 . . .dxn. (B.5)

Obviously this has to vanish for the normalization to be preserved, i.e. we requireJ = 0; notice
that this must hold foranysolution of the Fokker–Planck if equation (B.2) is a symmetry of
(2.6) and (2.7). This yields at once that we must have∫ +∞

−∞
α(x, t)dx1 . . .dxn = 0 (B.6)

and

β(x, t) = −div(ξ) (B.7)

this is precisely the condition (5.8) (i.e. (5.7) withc0 = 0) given in section 5.
Notice also that if we consider the Fokker–Planck equation with the normalization

condition (2.7), anα(x, t) satisfying (B.6) isnot an allowed solution, and the vector fieldXα
(see the examples) does not correspond to the linear superposition principle; this corresponds
to the fact that the function space (identified by (2.7)) in which we set our problem isnot a
linear space.
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